ノリの悪い日記

古今東西の映画、ポピュラー音楽、その他をいまここに交錯させながら随想します。

つるかめ算ではない

灘中の入試問題だったと思う.

35 も 3890 も 5 で割り切れ, 66 は 5 で割ると 1 あまる. したがって, かきの個数は 5 で割り切れる. そこで, かきの個数を ⑤ とおく.

66 × ⑤
= 66 × 5 × ①
= 11 × 30 × ①
= 330 × ①

35 は 7 で割り切れ, 3890 は

3890 = 3500 + 350 + 35 + 5

だから, 7 で割ると 5 あまる. 330 は,

330 = 280 + 49 + 1

だから, 7 で割ると 1 あまる. したがって,
① は, 7 で割ると 5 あまる. そういった数でいちばん小さいものをとって,

① = 5

したがって, 柿の個数は,

⑤ = 25

66 × 25
= 6600 ÷ 4
= 3300 ÷ 2
= 1650

3890 − 1650 = 2240

2240 ÷ 35
= 2240 × 2 ÷ 70
= 224 × 2 ÷ 7
= 32 × 2
= 64

かきは 25 個, みかんは 64 個. //

17 で割ると 3 余る数を ⑰ + 3 とおく. この数は 13 で割ると 7 余る. つまり ④ は 4 余る. そうすると, ① は 1 余る. 13 で割ると 1 余る一番小さな数は 1 だから ① = 1 とすると, 17 で割ると 3 余り, 13 で割ると 7 余る最も小さな数は 20 である.

同じ条件 (17 で割ると 3 余り, 13 で割ると 7 余る) を満足する 20 より大きな数と 20 の差は, 17 でも 13 でも割り切れる. したがってその差は,

13 × 17 = (13 + 7) ×10 + 3 × 7 = 221

の倍数である (13 と 17 の最小公倍数を何倍かしたものである). したがって, 3 けたの数でもっとも大きいものは,

20 + 221 × 4 = 20 + 884 = 904

である.
//